
Package: flacco (via r-universe)
August 22, 2024

Title Feature-Based Landscape Analysis of Continuous and Constrained
Optimization Problems

Description Tools and features for ``Exploratory Landscape Analysis
(ELA)'' of single-objective continuous optimization problems.
Those features are able to quantify rather complex properties,
such as the global structure, separability, etc., of the
optimization problems.

URL https://github.com/kerschke/flacco

BugReports https://github.com/kerschke/flacco/issues

License BSD_2_clause + file LICENSE

Encoding UTF-8

Roxygen list(wrap = FALSE)

Depends R (>= 3.0.0)

Imports BBmisc, checkmate, mlr

Suggests devtools, e1071, ggplot2, lhs, MASS, Matrix, mda, mlbench,
numDeriv, parallel, parallelMap, ParamHelpers, plotly, plyr,
RANN, R.rsp, rpart, shape, shiny, smoof, testthat

LazyData yes

ByteCompile yes

Version 1.8

Date 2020-03-31

RoxygenNote 7.1.0

VignetteBuilder R.rsp

Repository https://kerschke.r-universe.dev

RemoteUrl https://github.com/kerschke/flacco

RemoteRef HEAD

RemoteSha e647309b16425c808cccb69e8b5af6f52ec27bc5

1

https://github.com/kerschke/flacco
https://github.com/kerschke/flacco/issues

2 BBOBImport

Contents

BBOBImport . 2
BBOBImportPage . 3
calculateFeatureSet . 3
computeGridCenters . 15
convertInitDesignToGrid . 16
createInitialSample . 17
featureList . 18
FeatureObject . 18
featureObject_sidebar . 20
FeatureSetCalculation . 20
FeatureSetCalculationComponent . 21
FeatureSetVisualization . 22
FeatureSetVisualizationComponent . 22
findLinearNeighbours . 23
findNearestPrototype . 24
functionInput . 25
ggplotFeatureImportance . 25
listAvailableFeatureSets . 28
measureTime . 29
plotBarrierTree2D . 29
plotBarrierTree3D . 31
plotCellMapping . 32
plotInformationContent . 34
runFlaccoGUI . 36
SmoofImport . 37
SmoofImportPage . 37

Index 38

BBOBImport Shiny server function for BBOB import page module

Description

BBOBImport is a shiny server function which will control all aspects of the BBOBImportPage UI
Module. It will be called with callModule.

Usage

BBOBImport(input, output, session, stringsAsFactors)

https://CRAN.R-project.org/package=shiny

BBOBImportPage 3

Arguments

input [shiny-input]
shiny input variable for the specific UI module.

output [shiny-output object]
shiny output variable for the specific UI module.

session [shiny-session object]
shiny session variable for the specific UI module.

stringsAsFactors

[logical(1)]
How should strings be treated internally?

BBOBImportPage Shiny UI-Module for Batch Import of BBOB Functions

Description

BBOBImportPage is a shiny component which can be added to your shiny app so that you get a
batch import for several BBOB functions.

Usage

BBOBImportPage(id)

Arguments

id [character(1)]
Character representing the namespace of the shiny component.

Details

It will load a CSV-file with BBOB parameters (the function ID, instance ID and problem dimension)
and then calculate the selected features for the specific function(s).

calculateFeatureSet Calculate Landscape Features

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny

4 calculateFeatureSet

Description

Performs an Exploratory Landscape Analysis of a continuous function and computes various fea-
tures, which quantify the function’s landscape. Currently, the following feature sets are provided:

• CM: cell mapping features ("cm_angle", "cm_conv", "cm_grad")

• ELA: classical ELA features ("ela_conv", "ela_curv", "ela_distr", "ela_level", "ela_local",
"ela_meta")

• GCM: general cell mapping features ("gcm")

• BT: barrier tree features ("bt")

• IC: information content features ("ic")

• Basic: basic features ("basic")

• Disp: dispersion features ("disp")

• LiMo: linear model features ("limo")

• NBC: nearest better clustering features ("nbc")

• PC: principal component features ("pca")

Usage

calculateFeatureSet(feat.object, set, control, ...)

calculateFeatures(feat.object, control, ...)

Arguments

feat.object [FeatureObject]
A feature object as created by createFeatureObject.

set [character(1)]
Name of the feature set, which should be computed. All possible feature sets
can be listed using listAvailableFeatureSets.

control [list]
A list, which stores additional control arguments. For further information, see
details.

... [any]
Further arguments, e.g. handled by optim (within the computation of the ELA
local search features) or density (within the computation of the ELA y-distribution
features).

Details

Note that if you want to speed up the runtime of the features, you might consider running your
feature computation parallelized. For more information, please refer to the parallelMap package
or to https://mlr.mlr-org.com/articles/tutorial/parallelization.html.

Furthermore, please consider adapting the feature computation to your needs. Possible control
arguments are:

https://mlr.mlr-org.com/articles/tutorial/parallelization.html

calculateFeatureSet 5

• general:

– show_progress: Show progress bar when computing the features? The default is TRUE.
– subset: Specify a subset of features that should be computed. Per default, all features

will be computed.
– allow_cellmapping: Should cell mapping features be computed? The default is TRUE.
– allow_costs: Should expensive features, i.e. features, which require additional function

evaluations, be computed? The default is TRUE if the feature object provides a function,
otherwise FALSE.

– blacklist: Which features should NOT be computed? The default is NULL, i.e. none of
the features will be excluded.

• cell mapping angle features:

– cm_angle.show_warnings: Should possible warnings about NAs in the feature computa-
tion be shown? The default is FALSE.

• cell mapping convexity features:

– cm_conv.diag: Should cells, which are located on the diagonal compared to the current
cell, be considered as neighbouring cells? The default is FALSE, i.e. only cells along the
axes are considered as neighbours.

– cm_conv.dist_method: Which distance method should be used for computing the dis-
tance between two observations? All methods of dist are possible options with "euclidean"
being the default.

– cm_conv.minkowski_p: Value of p in case dist_meth is "minkowski". The default is 2,
i.e. the euclidean distance.

– cm_conv.fast_k: Percentage of elements that should be considered within the nearest
neighbour computation. The default is 0.05.

• cell mapping gradient homogeneity features:

– cm_grad.dist_tie_breaker: How will ties be broken when different observations have
the same distance to an observation? Possible values are "sample", "first" and "last".
The default is "sample".

– cm_grad.dist_method: Which distance method should be used for computing the dis-
tance between two observations? All methods of dist are possible options with "euclidean"
being the default.

– cm_grad.minkowski_p: Value of p in case dist_meth is "minkowski". The default is 2,
i.e. the euclidean distance.

– cm_grad.show_warnings: Should possible warnings about (almost) empty cells be shown?
The default is FALSE.

• ELA convexity features:

– ela_conv.nsample: Number of samples that are drawn for calculating the convexity
features. The default is 1000.

– ela_conv.threshold: Threshold of the linearity, i.e. the tolerance to / deviation from
perfect linearity, in order to still be considered linear. The default is 1e-10.

• ELA curvature features:

– ela_curv.sample_size: Number of samples used for calculating the curvature features.
The default is 100*d.

6 calculateFeatureSet

– ela_curv.{delta, eps, zero_tol, r, v}: Parameters used by grad and hessian within
the approximation of the gradient and hessian. The default values are identical to the ones
from the corresponding functions. Note that we slightly modified hessian in order to as-
sure that we do not exceed the boundaries during the estimation of the Hessian.

• ELA distribution features:

– ela_distr.smoothing_bandwidth: The smoothing bandwidth, which should be used
within the density estimation. The default is "SJ".

– ela_distr.modemass_threshold: Threshold that is used in order to classify whether a
minimum can be considered as a peak. The default is 0.01.

– ela_distr.skewness_type: Algorithm type for computing the skewness. The default
is 3.

– ela_distr.kurtosis_type: Algorithm type for computing the kurtosis. The default
is 3.

• ELA levelset features:

– ela_level.quantiles: Cutpoints (quantiles of the objective values) for splitting the
objective space. The default is c(0.10, 0.25, 0.50).

– ela_level.classif_methods: Methods for classifying the artificially splitted objective
space. The default is c("lda", "qda", "mda").

– ela_level.resample_method: Resample technique for training the model, cf. ResampleDesc.
The default is "CV".

– ela_level.resample_iterations: Number of iterations of the resampling method.
The default is 10.

– ela_level.resample_info: Should information regarding the resampling be printed?
The default is FALSE.

– ela_level.parallelize: Should the levelset features be computed in parallel? The
default is FALSE.

– ela_level.parallel.mode: Which mode should be used for the parallelized compu-
tation? Possible options are "local", "multicore", "socket" (default), "mpi" and
"BatchJobs". Note that in case you are using a windows computer you can only use
the "socket" mode.

– ela_level.parallel.cpus: On how many cpus do you want to compute the features in
parallel? Per default, all available cpus are used.

– ela_level.parallel.level: On which level should the parallel computation be per-
formed? The default is "mlr.resample", i.e. the internal resampling (performed using
mlr) will be done in parallel.

– ela_level.parallel.logging: Should slave output be logged? The default is FALSE.
– ela_level.parallel.show_info: Should verbose output of function calls be printed

on the console? The default is FALSE.

• ELA local search features:

– ela_local.local_searches: Number of local searches. The default is 50 * d with d
being the number of features (i.e. the dimension).

– ela_local.optim_method: Local search algorithm. The default is "L-BFGS-B".
– ela_local.optim.{lower, upper}: Lower and upper bounds to be considered by the

local search algorithm. Per default, the boundaries are the same as defined within the
feature object (in case of "L-BFGS-B") or infinity (for all others).

calculateFeatureSet 7

– ela_local.optim_method_control: Control settings of the local search algorithm. The
default is an empty list.

– ela_local.sample_seed: Seed, which will be set before the selection of the initial start
points of the local search. The default is sample(1:1e6, 1).

– ela_local.clust_method: Once the local searches converge, basins have to be as-
signed. This is done using hierarchical clustering methods from hclust. The default
is "single", i.e. single linkage clustering.

– ela_local.clust_cut_function: A function of a hierarchical clustering cl, which de-
fines at which height the dendrogramm should be splitted into clusters (cf. cutree).
The default is function(cl) as.numeric(quantile(cl$height, 0.1)), i.e. the 10%-
quantile of all the distances between clusters.

• GCM features:

– gcm.approaches: Which approach(es) should be used when computing the representa-
tives of a cell. The default are all three approaches, i.e. c("min", "mean", "near").

– gcm.cf_power: Theoretically, we need to compute the canonical form to the power of
infinity. However, we use this value as approximation of infinity. The default is 256.

• barrier tree features:

– gcm.approaches: Which approach(es) should be used when computing the representa-
tives of a cell. The default are all three approaches, i.e. c("min", "mean", "near").

– gcm.cf_power: Theoretically, we need to compute the canonical form to the power of
infinity. However, we use this value as approximation of infinity. The default is 256.

– bt.base: Maximum number of basins, which are joined at a single breakpoint. The
default is 4L.

– bt.max_depth: Maximum number of levels of the barrier tree. The default is 16L.

• information content features:

– ic.epsilon: Epsilon values as described in section V.A of Munoz et al. (2015). The
default is c(0, 10^(seq(-5, 15, length.out = 1000)).

– ic.sorting: Sorting strategy, which is used to define the tour through the landscape.
Possible values are "nn" (= default) and "random".

– ic.sample.generate: Should the initial design be created using a LHS? The default is
FALSE, i.e. the initial design from the feature object will be used.

– ic.sample.dimensions: Dimensions of the initial design, if created using a LHS. The
default is feat.object$dimension.

– ic.sample.size: Size of the initial design, if created using a LHS. The default is 100 *
feat.object$dimension.

– ic.sample.lower: Lower bounds of the initial design, if created with a LHS. The default
is 100 * feat.object$lower.

– ic.sample.upper: Upper bounds of the initial design, if created with a LHS. The default
is 100 * feat.object$upper.

– ic.aggregate_duplicated: How should observations, which have duplicates in the de-
cision space, be aggregated? The default is mean.

– ic.show_warnings: Should warnings be shown, when possible duplicates are removed?
The default is FALSE.

– ic.seed: Possible seed, which can be used for making your experiments reproducable.
Per default, a random number will be drawn as seed.

8 calculateFeatureSet

– ic.nn.start: Which observation should be used as starting value, when exploring the
landscape with the nearest neighbour approach. The default is a randomly chosen integer
value.

– ic.nn.neighborhood: In order to provide a fast computation of the features, we use
RANN::nn2 for computing the nearest neighbors of an observation. Per default, we con-
sider the 20L closest neighbors for finding the nearest not-yet-visited observation. If all
of those neighbors have been visited already, we compute the distances to the remaining
points separately.

– ic.settling_sensitivity: Threshold, which should be used for computing the “set-
tling sensitivity”. The default is 0.05 (as used in the corresponding paper).

– ic.info_sensitivity: Portion of partial information sensitivity. The default is 0.5 (as
used in the paper).

• dispersion features:

– disp.quantiles: Quantiles, which should be used for defining the "best" elements of
the entire initial design. The default is c(0.02, 0.05, 0.1, 0.25).

– disp.dist_method: Which distance method should be used for computing the distance
between two observations? All methods of dist are possible options with "euclidean"
being the default.

– disp.minkowski_p: Value of p in case dist_meth is "minkowski". The default is 2, i.e.
the euclidean distance.

• nearest better clustering features:

– nbc.dist_method: Which distance method should be used for computing the distance
between two observations? All methods of dist are possible options with "euclidean"
being the default.

– nbc.minkowski_p: Value of p in case dist_meth is "minkowski". The default is 2, i.e.
the euclidean distance.

– nbc.dist_tie_breaker: How will ties be broken when different observations have the
same distance to an observation? Possible values are "sample", "first" and "last".
The default is "sample".

– nbc.cor_na: How should NA’s be handled when computing correlations? Any method
from the argument use of the function cor is possible. The default is "pairwise.complete.obs".

– nbc.fast_k: In case of euclidean distances, the method can find neighbours faster. This
parameter controls the percentage of observations that should be considered when looking
for the nearest better neighbour, i.e. the nearest neighbour with a better objective value.
The default is 0.05, i.e. the 5

• principal component features:

– pca.{cov, cor}_{x, init}: Which proportion of the variance should be explained by
the principal components given a principal component analysis based on the covariance
/ correlation matrix of the decision space (x) or the entire initial design (init)? The
defaults are 0.9.

Value

list of (numeric) features:

calculateFeatureSet 9

• cm_angle – angle features (10):
These features are based on the location of the worst and best element within each cell. To
be precise, their distance to the cell center and the angle between these three elements (at the
center) are the foundation:

– dist_ctr2{best, worst}.{mean, sd}: arithmetic mean and standard deviation of dis-
tances from the cell center to the best / worst observation within the cell (over all cells)

– angle.{mean, sd}: arithmetic mean and standard deviation of angles (in degree) be-
tween worst, center and best element of a cell (over all cells)

– y_ratio_best2worst.{mean, sd}: arithmetic mean and standard deviation of the ratios
between the distance of the worst and best element within a cell and the worst and best
element in the entire initial design (over all cells);
note that the distances are only measured in the objective space

– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime
(in seconds), which were needed for the computation of these features

• cm_conv – cell mapping convexity features (6):
Each cell will be represented by an observation (of the initial design), which is located closest
to the cell center. Then, the objectives of three neighbouring cells are compared:

– {convex, concave}.hard: if the objective of the inner cell is above / below the two outer
cells, there is strong evidence for convexity / concavity

– {convex, concave}.soft: if the objective of the inner cell is above / below the arith-
metic mean of the two outer cells, there is weak evidence for convexity / concavity

– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime
(in seconds), which were needed for the computation of these features

• cm_grad – gradient homogeneity features (4):
Within a cell of the initial grid, the gradients between each observation and its nearest neigh-
bour observation are computed. Those gradients are then directed towards the smaller of the
two objective values and afterwards normalized. Then, the length of the sum of all the directed
and normalized gradients within a cell is computed. Based on those measurements (one per
cell) the following features are computed:

– {mean, sd}: arithmetic mean and standard deviation of the aforementioned lengths
– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime

(in seconds), which were needed for the computation of these features

• ela_conv – ELA convexity features (6):
Two observations are chosen randomly from the initial design. Then, a linear (convex) com-
bination of those observations is calculated – based on a random weight from [0, 1]. The
corresponding objective value will be compared to the linear combination of the objectives
from the two original observations. This process is replicated convex.nsample (per default
1000) times and will then be aggregated:

– {convex_p, linear_p}: percentage of convexity / linearity
– linear_dev.{orig, abs}: average (original / absolute) deviation between the linear

combination of the objectives and the objective of the linear combination of the observa-
tions

10 calculateFeatureSet

– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime
(in seconds), which were needed for the computation of these features

• ela_curv – ELA curvature features (26):
Given a feature object, curv.sample_size samples (per default 100 * d with d being the
number of features) are randomly chosen. Then, the gradient and hessian of the function are
estimated based on those points and the following features are computed:

– grad_norm.{min, lq, mean, median, uq, max, sd, nas}: aggregations (minimum, lower
quartile, arithmetic mean, median, upper quartile, maximum, standard deviation and per-
centage of NAs) of the gradients’ lengths

– grad_scale.{min, lq, mean, median, uq, max, sd, nas}: aggregations of the ratios
between biggest and smallest (absolute) gradient directions

– hessian_cond.{min, lq, mean, median, uq, max, sd, nas}: aggregations of the ra-
tios of biggest and smallest eigenvalue of the hessian matrices

– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime
(in seconds), which were needed for the computation of these features

• ela_distr – ELA y-distribution features (5):

– skewness: skewness of the objective values
– kurtosis: kurtosis of the objective values
– number_of_peaks: number of peaks based on an estimation of the density of the objec-

tive values
– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime

(in seconds), which were needed for the computation of these features

• ela_level – ELA levelset features (20):

– mmce_{methods}_{quantiles}: mean misclassification error of each pair of classifica-
tion method and quantile

– {method1}_{method2}_{quantiles}: ratio of all pairs of classification methods for all
quantiles

– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime
(in seconds), which were needed for the computation of these features

• ela_local – ELA local search features (16):
Based on some randomly chosen points from the initial design, a pre-defined number of local
searches (ela_local.local_searches) are executed. Their optima are then clustered (using
hierarchical clustering), assuming that local optima that are located close to each other, likely
belong to the same basin. Given those basins, the following features are computed:

– n_loc_opt.{abs, rel}: the absolute / relative amount of local optima
– best2mean_contr.orig: each cluster is represented by its center; this feature is the ratio

of the objective values of the best and average cluster
– best2mean_contr.ratio: each cluster is represented by its center; this feature is the

ratio of the differences in the objective values of average to best and worst to best cluster
– basin_sizes.avg_{best, non_best, worst}: average basin size of the best / non-best

/ worst cluster(s)

calculateFeatureSet 11

– fun_evals.{min, lq, mean, median, uq, max, sd}: aggregations of the performed lo-
cal searches

– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime
(in seconds), which were needed for the computation of these features

• ela_meta – ELA meta model features (11):
Given an initial design, linear and quadratic models of the form objective ~ features are
created. Both versions are created with and without simple interactions (e.g., x1:x2). Based
on those models, the following features are computed:

– lin_simple.{adj_r2, intercept}: adjusted R^2 (i.e. model fit) and intercept of a
simple linear model

– lin_simple.coef.{min, max, max_by_min}: smallest and biggest (non-intercept) ab-
solute coefficients of the simple linear model, and their ratio

– {lin_w_interact, quad_simple, quad_w_interact}.adj_r2: adjusted R^2 (i.e. the
model fit) of a linear model with interactions, and a quadratic model with and without
interactions

– quad_simple.cond: condition of a simple quadratic model (without interactions), i.e.
the ratio of its (absolute) biggest and smallest coefficients

– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime
(in seconds), which were needed for the computation of these features

• gcm – general cell mapping (GCM) features (75):
Computes general cell mapping features based on the Generalized Cell Mapping (GCM) ap-
proach, which interpretes the cells as absorbing Markov chains. Computations are performed
based on three different approaches: taking the best (min) or average (mean) objective value of
a cell or the closest observation (near) to a cell as representative. For each of these approaches
the following 25 features are computed:

– attractors, pcells, tcells, uncertain: relative amount of attractor, periodic, tran-
sient and uncertain cells

– basin_prob.{min, mean, median, max, sd}: aggregations of the probabilities of each
basin of attraction

– basin_certain.{min, mean, median, max, sd}: aggregations of the (relative) size of
each basin of attraction, in case only certain cells are considered (i.e. cells, which only
point towards one attractor)

– basin_uncertain.{min, mean, median, max, sd}: aggregations of the (relative) size
of each basin of attraction, in case uncertain cells are considered (i.e. a cell, which points
to multiple attractors contributes to each of its basins)

– best_attr.{prob, no}: probability of finding the attractor with the best objective value
and the (relative) amount of those attractors (i.e. the ratio of the number of attractors with
the best objective value and the total amount of cells)

– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime
(in seconds), which were needed for the computation of these features

• bt – barrier tree features (90):
Computes barrier tree features, based on a Generalized Cell Mapping (GCM) approach. Com-
putations are performed based on three different approaches: taking the best (min) or average
(mean) objective value of a cell or the closest observation (near) to a cell as representative.

12 calculateFeatureSet

For each of these approaches the following 31 features are computed:

– levels: absolute number of levels of the barrier tree
– leaves: absolute number of leaves (i.e. local optima) of the barrier tree
– depth: range between highest and lowest node of the tree
– depth_levels_ratio: ratio of depth and levels
– levels_nodes_ratio: ratio of number of levels and number of (non-root) nodes of the

tree
– diffs.{min, mean, median, max, sd}: aggregations of the height differences between

a node and its predecessor
– level_diffs.{min, mean, median, max, sd}: aggregations of the average height dif-

ferences per level
– attractor_dists.{min, mean, median, max, sd}: aggregations of the (euclidean) dis-

tances between the local and global best cells (attractors)
– basin_ratio.{uncertain, certain, most_likely}: ratios of maximum and minimum

size of the basins of attractions; here, a cell might belong to different attractors (uncer-
tain), exactly one attractor (certain) or the attractor with the highest probability

– basin_intersection.{min, mean, median, max, sd}: aggregations of the intersection
between the basin of the global best value and the basins of all local best values

– basin_range: range of a basin (euclidean distance of widest range per dimension)
– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime

(in seconds), which were needed for the computation of these features

• ic – information content features (7):
Computes features based on the Information Content of Fitness Sequences (ICoFiS) approach
(cf. Munoz et al., 2015). In this approach, the information content of a continuous landscape,
i.e. smoothness, ruggedness, or neutrality, are quantified. While common analysis methods
were able to calculate the information content of discrete landscapes, the ICoFiS approach
provides an adaptation to continuous landscapes that accounts e.g. for variable step sizes in
random walk sampling:

– h.max: “maximum information content” (entropy) of the fitness sequence, cf. equation
(5)

– eps.s: “settling sensitivity”, indicating the epsilon for which the sequence nearly consists
of zeros only, cf. equation (6)

– eps.max: similar to eps.s, but in contrast to the former eps.max guarantees non-missing
values; this simply is the epsilon-value for which H(eps.max) == h.max

– eps.ratio: “ratio of partial information sensitivity”, cf. equation (8), where the ratio is
0.5

– m0: “initial partial information”, cf. equation (7)
– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime

(in seconds), which were needed for the computation of these features

• basic – basic features (15):
Very simple features, which can be read from the feature object (without any computational
efforts):

calculateFeatureSet 13

– {dim, observations}: number of features / dimensions and observations within the
initial sample

– {lower, upper, objective, blocks}_{min, max}: minimum and maximum value of
all lower and upper bounds, the objective values and the number of blocks / cells (per
dimension)

– cells_{filled, total}: number of filled (i.e. non-empty) cells and total number of
cells

– {minimize_fun}: logical value, indicating whether the optimization function should be
minimized

– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime
(in seconds), which were needed for the computation of these features

• disp – dispersion features (18):
Computes features based on the comparison of the dispersion of pairwise distances among the
’best’ elements and the entire initial design:

– {ratio, diff}_{mean, median}_{02, 05, 10, 25}: ratio and difference of the mean /
median distances of the distances of the ’best’ objectives vs. ’all’ objectives

– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime
(in seconds), which were needed for the computation of these features

• limo – linear model features (14):
Linear models are computed per cell, provided the decision space is divided into a grid of
cells. Each one of the models has the form objective ~ features.

– avg_length.{reg, norm}: length of the average coefficient vector (based on regular and
normalized vectors)

– length_{mean, sd}: arithmetic mean and standard deviation of the lengths of all coeffi-
cient vectors

– cor.{reg, norm}: correlation of all coefficient vectors (based on regular and normalized
vectors)

– ratio_{mean, sd}: arithmetic mean and standard deviation of the ratios of (absolute)
maximum and minimum (non-intercept) coefficients per cell

– sd_{ratio, mean}.{reg, norm}: max-by-min-ratio and arithmetic mean of the standard
deviations of the (non-intercept) coefficients (based on regular and normalized vectors)

– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime
(in seconds), which were needed for the computation of these features

• nbc – nearest better (clustering) features (7):
Computes features based on the comparison of nearest neighbour and nearest better neigh-
bour, i.e., the nearest neighbor with a better performance / objective value value.

– nn_nb.{sd, mean}_ratio: ratio of standard deviations and arithmetic mean based on
the distances among the nearest neighbours and the nearest better neighbours

– nn_nb.cor: correlation between distances of the nearest neighbours and the distances of
the nearest better neighbours

– dist_ratio.coeff_var: coefficient of variation of the distance ratios

14 calculateFeatureSet

– nb_fitness.cor: correlation between fitness value and count of observations to whom
the current observation is the nearest better neighbour (the so-called “indegree”).

– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime
(in seconds), which were needed for the computation of these features

• pca – principal component (analysis) features (10):

– expl_var.{cov, cor}_{x, init}: proportion of the explained variance when applying
PCA to the covariance / correlation matrix of the decision space (x) or the entire initial
design (init)

– expl_var_PC1.{cov, cor}_{x, init}: proportion of variance, which is explained by
the first principal component – when applying PCA to the covariance / correlation matrix
of the decision space (x) or the entire initial design

– costs_{fun_evals, runtime}: number of (additional) function evaluations and runtime
(in seconds), which were needed for the computation of these features

References

• Kerschke, P., and Trautmann, H. (2019): “Comprehensive Feature-Based Landscape Anal-
ysis of Continuous and Constrained Optimization Problems Using the R-package flacco”,
in: Applications in Statistical Computing – From Music Data Analysis to Industrial Qual-
ity Improvement, pp. 93-123, Springer. (https://link.springer.com/chapter/10.1007/
978-3-030-25147-5_7).

• Kerschke, P., Preuss, M., Hernandez, C., Schuetze, O., Sun, J.-Q., Grimme, C., Rudolph, G.,
Bischl, B., and Trautmann, H. (2014): “Cell Mapping Techniques for Exploratory Landscape
Analysis”, in: EVOLVE – A Bridge between Probability, Set Oriented Numerics, and Evolu-
tionary Computation V, pp. 115-131 (http://dx.doi.org/10.1007/978-3-319-07494-8_
9).

• Kerschke, P., Preuss, M., Wessing, S., and Trautmann, H. (2015): “Detecting Funnel Struc-
tures by Means of Exploratory Landscape Analysis”, in: Proceedings of the 17th Annual
Conference on Genetic and Evolutionary Computation (GECCO ’15), pp. 265-272 (http:
//dx.doi.org/10.1145/2739480.2754642).

• Lunacek, M., and Whitley, D. (2006): “The dispersion metric and the CMA evolution strat-
egy”, in: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation
(GECCO ’06), pp. 477-484 (http://dx.doi.org/10.1145/1143997.1144085).

• Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., and Rudolph, G. (2011):
“Exploratory Landscape Analysis”, in: Proceedings of the 13th Annual Conference on Ge-
netic and Evolutionary Computation (GECCO ’11), pp. 829-836 (http://dx.doi.org/10.
1145/2001576.2001690).

• Munoz, M. A., Kirley, M., and Halgamuge, S. K. (2015): “Exploratory Landscape Analysis of
Continuous Space Optimization Problems Using Information Content”, in: IEEE Transactions
on Evolutionary Computation (19:1), pp. 74-87 (http://dx.doi.org/10.1109/TEVC.2014.
2302006).

Examples

(1) create a feature object:
X = t(replicate(n = 2000, expr = runif(n = 5, min = -10, max = 10)))

https://link.springer.com/chapter/10.1007/978-3-030-25147-5_7
https://link.springer.com/chapter/10.1007/978-3-030-25147-5_7
http://dx.doi.org/10.1007/978-3-319-07494-8_9
http://dx.doi.org/10.1007/978-3-319-07494-8_9
http://dx.doi.org/10.1145/2739480.2754642
http://dx.doi.org/10.1145/2739480.2754642
http://dx.doi.org/10.1145/1143997.1144085
http://dx.doi.org/10.1145/2001576.2001690
http://dx.doi.org/10.1145/2001576.2001690
http://dx.doi.org/10.1109/TEVC.2014.2302006
http://dx.doi.org/10.1109/TEVC.2014.2302006

computeGridCenters 15

Not run: feat.object = createFeatureObject(X = X, fun = function(x) sum(x^2))

(2) compute all non-cellmapping features
ctrl = list(allow_cellmapping = FALSE)
Not run: features = calculateFeatures(feat.object, control = ctrl)

(3) in order to allow the computation of the cell mapping features, one
has to provide a feature object that has knowledge about the number of
cells per dimension:
f = function(x) sum(x^2)
feat.object = createFeatureObject(X = X, fun = f, blocks = 3)
Not run: features = calculateFeatures(feat.object)

(4) if you want to compute a specific feature set, you can use
calculateFeatureSet:
features.angle = calculateFeatureSet(feat.object, "cm_angle")

(5) as noted in the details, it might be useful to compute the levelset
features parallelized:
Not run:
library(parallelMap)
library(parallel)
n.cores = detectCores()
parallelStart(mode = "socket", cpus = n.cores,

logging = FALSE, show.info = FALSE)
system.time((levelset.par = calculateFeatureSet(feat.object, "ela_level")))
parallelStop()
system.time((levelset.seq = calculateFeatureSet(feat.object, "ela_level")))
End(Not run)

computeGridCenters Compute the Cell Centers of a Cell Mapping Grid

Description

Computes the cell centers and the corresponding cell IDs of a cell mapping grid.

Usage

computeGridCenters(lower, upper, blocks)

Arguments

lower [numeric or integer]
The lower limits per dimension.

upper [numeric or integer]
The upper limits per dimension.

blocks [integer]
The number of blocks per dimension.

16 convertInitDesignToGrid

Value

[data.frame].
A data.frame, which includes the coordinates of the cell centers, as well as the corresponding cell
ID (cell.ID).

Examples

computeGridCenters(lower = -10, upper = 10, blocks = c(10, 5, 8))

convertInitDesignToGrid

Converts an Initial Design into a Cell Mapping Grid

Description

This function takes an initial design – with rows being the observations and columns standing for the
dimensions (plus the corresponding objective) – and adds an additional column to the data.frame.
This additional column states the cell ID for each observation.

Usage

convertInitDesignToGrid(init, lower, upper, blocks)

Arguments

init [data.frame]
The initial design, consisting of d + 1 columns (d dimensions and one column
for the objective value) and one row per observation.

lower [numeric or integer]
The lower limits per dimension.

upper [numeric or integer]
The upper limits per dimension.

blocks [integer]
The number of blocks per dimension.

Value

[data.frame].
A data.frame, which includes an additional column (cell.ID) compared to the initial design
(init). The cell.ID will be a value between 1 and prod(blocks).

createInitialSample 17

Examples

(1) create an initial design:
X = t(replicate(n = 200, expr = runif(n = 5, min = -10, max = 10)))
f = function(x) sum(x^2)
y = apply(X = X, MARGIN = 1, FUN = f)
init = data.frame(X, y = y)

(2) compute the cell mapping grid
convertInitDesignToGrid(init = init, lower = -10, upper = 10, blocks = 20)

createInitialSample Create Initial Sample

Description

Convenient helper function, which creates an initial sample - either based on random (uniform)
sampling or using latin hypercube sampling.

Usage

createInitialSample(n.obs, dim, control)

Arguments

n.obs [integer(1)]
Number of observations.

dim [integer(1)]
Number of dimensions.

control [list]
Control argument. For further information refer to the details.

Details

Per default, this function will produce n.obs observations of size dim in the range from 0 to 1. If
you want to create a more specific initial sample, the following control arguments might be helpful:

• init_sample.type: Should the initial sample be created based on random uniform sampling
("random") or on a latin hypercube sample ("lhs")? The default is "random".

• init_sample.lower: The lower bounds of the initial sample. Either a vector of size dim or a
scalar (if all lower bounds are identical). The default is 0.

• init_sample.upper: The upper bounds of the initial sample. Either a vector of size dim or a
scalar (if all upper bounds are identical). The default is 1.

Value

[matrix].
A matrix, consisting of n.obs rows of dim-dimensional observations.

18 FeatureObject

Examples

(1) create a simple initial sample:
X = createInitialSample(300, 5)
summary(X)

(2) create a more specific initial sample:
ctrl = list(init_sample.type = "lhs",

init_sample.lower = c(-5, 2, 0),
init_sample.upper = 10)

X = createInitialSample(200, 3, control = ctrl)
summary(X)

featureList Feature List

Description

Contains a list of features. This could be the result of a feature selection (based on a nested resam-
pling strategy) executed on the Glass data.

FeatureObject Create a Feature Object

Description

Create a FeatureObject, which will be used as input for all the feature computations.

Usage

createFeatureObject(
init,
X,
y,
fun,
minimize,
lower,
upper,
blocks,
objective,
force = FALSE

)

FeatureObject 19

Arguments

init [data.frame]
A data.frame, which can be used as initial design. If not provided, it will be
created either based on the initial sample X and the objective values y or X and
the function definition fun.

X [data.frame or matrix]
A data.frame or matrix containing the initial sample. If not provided, it will
be extracted from init.

y [numeric or integer]
A vector containing the objective values of the initial design. If not provided, it
will be extracted from init.

fun [function]
A function, which allows the computation of the objective values. If it is not pro-
vided, features that require additional function evaluations, can’t be computed.

minimize [logical(1)]
Should the objective function be minimized? The default is TRUE.

lower [numeric or integer]
The lower limits per dimension.

upper [numeric or integer]
The upper limits per dimension.

blocks [integer]
The number of blocks per dimension.

objective [character(1)]
The name of the feature, which contains the objective values. The default is "y".

force [logical(1)]
Only change this parameter IF YOU KNOW WHAT YOU ARE DOING! Per
default (force = FALSE), the function checks whether the total number of cells
that you are trying to generate, is below the (hard-coded) internal maximum of
25,000 cells. If you set this parameter to TRUE, you agree that you want to exceed
that internal limit.
Note: *Exploratory Landscape Analysis (ELA)* is only useful when you are
limited to a small budget (i.e., a small number of function evaluations) and in
such scenarios, the number of cells should also be kept low!

Value

[FeatureObject].

Examples

(1a) create a feature object using X and y:
X = createInitialSample(n.obs = 500, dim = 3,

control = list(init_sample.lower = -10, init_sample.upper = 10))
y = apply(X, 1, function(x) sum(x^2))
feat.object1 = createFeatureObject(X = X, y = y,

lower = -10, upper = 10, blocks = c(5, 10, 4))

20 FeatureSetCalculation

(1b) create a feature object using X and fun:
feat.object2 = createFeatureObject(X = X,

fun = function(x) sum(sin(x) * x^2),
lower = -10, upper = 10, blocks = c(5, 10, 4))

(1c) create a feature object using a data.frame:
feat.object3 = createFeatureObject(iris[,-5], blocks = 5,

objective = "Petal.Length")

(2) have a look at the feature objects:
feat.object1
feat.object2
feat.object3

(3) now, one could calculate features
calculateFeatureSet(feat.object1, "ela_meta")
calculateFeatureSet(feat.object2, "cm_grad")
library(plyr)
calculateFeatureSet(feat.object3, "cm_angle", control = list(cm_angle.show_warnings = FALSE))

featureObject_sidebar Shiny UI-Module for Function Input

Description

featObject_sidebar is a shiny UI-component which can be added to your shiny app so that you
can easily generate a feature object by providing all relevant information.

Usage

featureObject_sidebar(id)

Arguments

id [character(1)]
Character representing the namespace of the shiny component.

FeatureSetCalculation Shiny Server Function for Feature Set Component

Description

FeatureSetCalculation is a shiny server function which will control all aspects of the FeatureSetCalculationComponent
UI Module. Will be called with callModule.

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny

FeatureSetCalculationComponent 21

Usage

FeatureSetCalculation(input, output, session, stringsAsFactors, feat.object)

Arguments

input [shiny-input]
shiny input variable for the specific UI module.

output [shiny-output object]
shiny output variable for the specific UI module.

session [shiny-session object]
shiny session variable for the specific UI module.

stringsAsFactors

[logical(1)]
How should strings be treated internally?

feat.object [FeatureObject]
A feature object as created by createFeatureObject.

Details

It will take the user input and calculate the selected feature set. In order to calculate a feature set,
the function needs a FeatureObject.

FeatureSetCalculationComponent

Shiny UI-Module for Calculating and Displaying Feature Sets

Description

FeatureSetCalculationComponent is a shiny UI-component which can be added to your shiny
app so that you can calculate and display different feature sets.

Usage

FeatureSetCalculationComponent(id)

Arguments

id [character(1)]
Character representing the namespace of the shiny component.

Details

The component integrates a select-Input for choosing the feature set, which should be calculated and
displayed in a table. With the download button the calculated features can be exported as CSV-file.

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny

22 FeatureSetVisualizationComponent

FeatureSetVisualization

Shiny Server Function for Feature Set Component

Description

FeatureSetVisualization is a shiny server function which will control all aspects of the FeatureSetVisualizationComponent
UI-Module. It will be called with callModule.

Usage

FeatureSetVisualization(input, output, session, stringsAsFactors, feat.object)

Arguments

input [shiny-input]
shiny input variable for the specific UI module.

output [shiny-output object]
shiny output variable for the specific UI module.

session [shiny-session object]
shiny session variable for the specific UI module.

stringsAsFactors

[logical(1)]
How should strings be treated internally?

feat.object [FeatureObject]
A feature object as created by createFeatureObject.

Details

It will take the user input and plot the selected visualization. To create a flacco plot, the function
needs a FeatureObject.

FeatureSetVisualizationComponent

Shiny Component for Visualizing the Feature Sets

Description

FeatureSetVisualizationComponent is a shiny component which can be added to your shiny
app so that you can display different feature set plots.

Usage

FeatureSetVisualizationComponent(id)

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny

findLinearNeighbours 23

Arguments

id [character(1)]
Character representing the namespace of the shiny component.

Details

It integrates a select input where the user can select the plot which should be created.

findLinearNeighbours Find Neighbouring Cells

Description

Given a vector of cell IDs (cell.ids) and a vector (blocks), which defines the number of blocks /
cells per dimension, a list of all combinations of (linearly) neighbouring cells around each element
of cell.ids is returned.

Usage

findLinearNeighbours(cell.ids, blocks, diag = FALSE)

Arguments

cell.ids [integer]
Vector of cell IDs (one number per cell) for which the neighbouring cells should
be computed.

blocks [integer]
The number of blocks per dimension.

diag [logical(1)]
logical, indicating whether only cells that are located parallel to the axes
should be considered (diag = FALSE) as neighbours. Alternatively, one can also
look for neighbours that are located diagonally to a cell. The default is diag =
FALSE.

Value

[list of integer(3)].
List of neighbours. Each list element stands for a combination of predecessing, current and suc-
ceeding cell.

https://CRAN.R-project.org/package=shiny

24 findNearestPrototype

Examples

cell.ids = c(5, 84, 17, 23)
blocks = c(5, 4, 7)

(1) Considering diagonal neighbours as well:
findLinearNeighbours(cell.ids = cell.ids, blocks = blocks, diag = TRUE)

(2) Only consider neighbours which are parellel to the axes:
findLinearNeighbours(cell.ids = cell.ids, blocks = blocks)

findNearestPrototype Find Nearest Prototype

Description

For each cell of the initial design, select the closest observation to its center and use it as a repre-
sentative for that cell.

Usage

findNearestPrototype(feat.object, dist_meth, mink_p, fast_k, ...)

Arguments

feat.object [FeatureObject]
A feature object as created by createFeatureObject.

dist_meth [character(1)]
Which distance method should be used for computing the distance between two
observations? All methods of dist are possible options with "euclidean" be-
ing the default.

mink_p [integer(1)]
Value of p in case dist_meth is "minkowski". The default is 2, i.e. the eu-
clidean distance.

fast_k [numeric(1)]
Percentage of elements that should be considered within the nearest neighbour
computation. The default is 0.05.

... [any]
Further arguments, which might be used within the distance computation (dist).

Value

[data.frame].
A data.frame containing one prototype (i.e. a representative observation) per cell. Each prototype
consists of its values from the decision space, the corresponding objective value, its own cell ID and
the cell ID of the cell, which it represents.

functionInput 25

Examples

(1) create the initial sample and feature object:
X = createInitialSample(n.obs = 1000, dim = 2,

control = list(init_sample.lower = -10, init_sample.upper = 10))
feat.object = createFeatureObject(X = X,

fun = function(x) sum(x^2), blocks = 10)

(2) find the nearest prototypes of all cells:
findNearestPrototype(feat.object)

functionInput Shiny Server Function for Feature Calculation of Function Input

Description

functionInput is a shiny server function which controls all aspects of the FlaccoFunctionInput
UI Module. Will be called with callModule.

Usage

functionInput(input, output, session, stringsAsFactors)

Arguments

input [shiny-input]
shiny input variable for the specific UI module.

output [shiny-output object]
shiny output variable for the specific UI module.

session [shiny-session object]
shiny session variable for the specific UI module.

stringsAsFactors

[logical(1)]
How should strings be treated internally?

ggplotFeatureImportance

Feature Importance Plot

Description

Creates a feature importance plot.

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny

26 ggplotFeatureImportance

Usage

ggplotFeatureImportance(featureList, control = list(), ...)

plotFeatureImportance(featureList, control = list(), ...)

Arguments

featureList [list]
List of vectors of features. One list element is expected to belong to one resam-
pling iteration / fold.

control [list]
A list, which stores additional configuration parameters:

• featimp.col_{high/medium/low}: Color of the features, which are used
often, sometimes or only a few times.

• featimp.perc_{high/low}: Percentage of the total number of folds, defin-
ing when a features, is used often, sometimes or only a few times.

• featimp.las: Alignment of axis labels.
• featimp.lab_{feat/resample}: Axis labels (features and resample iter-

ations).
• featimp.string_angle: Angle for the features on the x-axis.
• featimp.pch_{active/inactive}: Plot symbol of the active and inactive

points.
• featimp.col_inactive: Color of the inactive points.
• featimp.col_vertical: Color of the vertical lines.
• featimp.lab_{title/strip}: Label used for the title and/or strip label.

These parameters are only relevant for ggplotFeatureImportance.
• featimp.legend_position: Location of the legend. This parameter is

only relevant for ggplotFeatureImportance.
• featimp.flip_axes: Should the axes be flipped? This parameter is only

relevant for ggplotFeatureImportance.
• featimp.plot_tiles: Visualize (non-)selected features with tiles? This

parameter is only relevant for ggplotFeatureImportance.

... [any]
Further arguments, which can be passed to plot.

Value

[plot].
Feature Importance Plot, indicating which feature was used during which iteration.

Examples

Not run:
At the beginning, one needs a list of features, e.g. derived during a
nested feature selection within mlr (see the following 8 steps):
library(mlr)

ggplotFeatureImportance 27

library(mlbench)
data(Glass)

(1) Create a classification task:
classifTask = makeClassifTask(data = Glass, target = "Type")

(2) Define the model (here, a classification tree):
lrn = makeLearner(cl = "classif.rpart")

(3) Define the resampling strategy, which is supposed to be used within
each inner loop of the nested feature selection:
innerResampling = makeResampleDesc("Holdout")

(4) What kind of feature selection approach should be used? Here, we use a
sequential backward strategy, i.e. starting from a model with all features,
in each step the feature decreasing the performance measure the least is
removed from the model:
ctrl = makeFeatSelControlSequential(method = "sbs")

(5) Wrap the original model (see (2)) in order to allow feature selection:
wrappedLearner = makeFeatSelWrapper(learner = lrn,

resampling = innerResampling, control = ctrl)

(6) Define a resampling strategy for the outer loop. This is necessary in
order to assess whether the selected features depend on the underlying
fold:
outerResampling = makeResampleDesc(method = "CV", iters = 10L)

(7) Perform the feature selection:
featselResult = resample(learner = wrappedLearner, task = classifTask,

resampling = outerResampling, models = TRUE)

(8) Extract the features, which were selected during each iteration of the
outer loop (i.e. during each of the 10 folds of the cross-validation):
featureList = lapply(featselResult$models,

function(mod) getFeatSelResult(mod)$x)
End(Not run)

##

Now, one could inspect the features manually:
featureList

Alternatively, one might use visual means such as the feature
importance plot. There exist two versions for the feature importance
plot. One based on the classical R figures
plotFeatureImportance(featureList)

and one using ggplot
ggplotFeatureImportance(featureList)

28 listAvailableFeatureSets

listAvailableFeatureSets

List Available Feature Sets

Description

Lists all available feature sets w.r.t. certain restrictions.

Usage

listAvailableFeatureSets(
subset,
allow.cellmapping,
allow.additional_costs,
blacklist

)

Arguments

subset [character]
Vector of feature sets, which should be considered. If not defined, all features
will be considered.

allow.cellmapping

[logical(1)]
Should (general) cell mapping features be considered as well? The default is
TRUE.

allow.additional_costs

[logical(1)]
Should feature sets be considered, which require additional function evalua-
tions? The default is TRUE.

blacklist [character]
Vector of feature sets, which should not be considered. The default is NULL.

Value

[character].
Feature sets, which could be computed - based on the provided input.

Examples

sets = listAvailableFeatureSets()

measureTime 29

measureTime Measure Runtime of a Feature Computation

Description

Simple wrapper around proc.time.

Usage

measureTime(expr, prefix, envir = parent.frame())

Arguments

expr [expression]
Expression of which the time should be measured.

prefix [character(1)]
Name of the corresponding feature set. Used as a prefix for the runtime.

envir [environment]
Environment in which expr should be evaluated.

Value

Returns the value(s) of the evaluated expr and adds two additional attributes: the number of function
evaluations costs_fun_evals and the runtime costs_runtime, which was required for evaluating
the expression.

plotBarrierTree2D Plot Barrier Tree in 2D

Description

Creates a 2D image containing the barrier tree of this cell mapping.

Usage

plotBarrierTree2D(feat.object, control)

Arguments

feat.object [FeatureObject]
A feature object as created by createFeatureObject.

control [list]
A list, which stores additional control arguments. For further information, see
details.

30 plotBarrierTree2D

Details

Possible control arguments are:

• Computation of Cell Mapping:

– gcm.approach: Which approach should be used when computing the representatives of
a cell. The default is "min", i.e. the observation with the best (minimum) value within
per cell.

– gcm.cf_power: Theoretically, we need to compute the canonical form to the power of
infinity. However, we use this value as approximation of infinity. The default is 256.

• Plot Control:

– bt.cm_surface: Should the underlying surface be based on a cell mapping plot (default
is TRUE)? Alternatively, the cells would be coloured in shades of grey - according to their
objective values.

– bt.margin: Margins of the plot as used by par("mar"). The default is c(5, 5, 4, 4).
– bt.color_surface: Color of the surface of the perspective plot. The default is "lightgrey".
– bt.color_branches: Color used for the branches of the barrier tree. Per default there

will be one color per level.
– bt.pch_root: Symbol used for plotting the root. The default is 17 (filled triangle).
– bt.pch_breakpoint: Symbol used for plotting a breakpoint. The default is 5 (non-filled

diamond).
– bt.pch_basin: Symbol used for plotting the leaf (i.e. a basin) of the barrier tree. The

default is 19 (filled circle).
– bt.col_root: Color of the root symbol. The default is "red".
– bt.lwd: Width of the lines used for plotting the branches of a barrier tree. The default is
2.

– bt.label.{x, y}_coord: Label of the x-/y-coordinate (below / left side of the plot).
– bt.label.{x, y}_id: Label of the x-/y-cell ID (above / right side of the plot).

Value

[plot].
A 2D image, visualizing the barrier tree of this cell mapping.

Examples

create a feature object
X = createInitialSample(n.obs = 900, dim = 2)
f = smoof::makeAckleyFunction(dimensions = 2)
y = apply(X, 1, f)
feat.object = createFeatureObject(X = X, y = y, fun = f, blocks = c(4, 6))

plot the corresponing barrier tree
plotBarrierTree2D(feat.object)

plotBarrierTree3D 31

plotBarrierTree3D Plot Barrier Tree in 3D

Description

Creates a 3D surface plot containing the barrier tree of this cell mapping.

Usage

plotBarrierTree3D(feat.object, control)

Arguments

feat.object [FeatureObject]
A feature object as created by createFeatureObject.

control [list]
A list, which stores additional control arguments. For further information, see
details.

Details

Possible control arguments are:

• Computation of Cell Mapping:

– gcm.approach: Which approach should be used when computing the representatives of
a cell. The default is "min", i.e. the observation with the best (minimum) value within
per cell.

– gcm.cf_power: Theoretically, we need to compute the canonical form to the power of
infinity. However, we use this value as approximation of infinity. The default is 256.

• Plot Control:

– bt.margin: Margins of the plot as used by par("mar"). The default is c(0.5, 1, 0, 0).
– bt.color_surface: Color of the surface of the perspective plot. The default is "lightgrey".
– bt.color_branches: Color used for the branches of the barrier tree. Per default there

will be one color per level.
– bt.persp_border: Color of the lines / borders around each facet of the perspective plot.

The default is "grey".
– bt.persp_shade: A ratio defining the shade of the surface. The default is 0.35.
– bt.persp_{theta, phi}: Angles (in degree) defining the viewing direction of the per-

spective plot. theta corresponds to the azimuthal direction (default: 330) and phi to the
colatitude (default: 15).

– bt.persp_{xlab, ylab, zlab}: Labels of the x-, y- and z- axis. The defaults are
expression(x[1]), expression(x[2]) and expression(f(x[1], x[2]))

– bt.persp_ticktype: Should the values of each dimension be shown in detail ("detailed")
or just via "simple" arrows in direction of increasement along the axes? The default is
"detailed".

32 plotCellMapping

– bt.col_root: Color of the root symbol. The default is "red".
– bt.pch_root: Symbol used for plotting the root. The default is 17 (filled triangle).
– bt.pch_breakpoint: Symbol used for plotting a breakpoint. The default is 5 (non-filled

diamond).
– bt.pch_basin: Symbol used for plotting the leaf (i.e. a basin) of the barrier tree. The

default is 19 (filled circle).
– bt.lwd: Width of the lines used for plotting the branches of a barrier tree. The default is
2.

Value

[plot].
A 3D-surface plot, visualizing the barrier tree of this cell mapping.

Examples

create a feature object
X = createInitialSample(n.obs = 900, dim = 2)
f = smoof::makeAckleyFunction(dimensions = 2)
y = apply(X, 1, f)
feat.object = createFeatureObject(X = X, y = y, fun = f, blocks = c(4, 6))

plot the corresponing barrier tree
plotBarrierTree3D(feat.object)

plotCellMapping Plot Cell Mapping

Description

Visualizes the transitions among the cells in the General Cell Mapping approach.

Usage

plotCellMapping(feat.object, control)

Arguments

feat.object [FeatureObject]
A feature object as created by createFeatureObject.

control [list]
A list, which stores additional control arguments. For further information, see
details.

plotCellMapping 33

Details

Possible control arguments are:

• Computation of GCM Features:

– gcm.approach: Which approach should be used when computing the representatives of
a cell. The default is "min", i.e. the observation with the best (minimum) value within
per cell.

– gcm.cf_power: Theoretically, we need to compute the canonical form to the power of
infinity. However, we use this value as approximation of infinity. The default is 256.

• Plot Control:

– gcm.margin: The margins of the plot as used by par("mar"). The default is c(5, 5, 4,
4).

– gcm.color_attractor: Color of the attractors. The default is "#333333", i.e. dark grey.
– gcm.color_uncertain: Color of the uncertain cells. The default is "#cccccc", i.e. grey.
– gcm.color_basin: Color of the basins of attraction. This has to be a function, which

computes the colors, depending on the number of attractors. The default is the color
scheme from ggplot2.

– gcm.plot_arrows: Should arrows be plotted? The default is TRUE.
– gcm.arrow.length_{x, y}: Scaling factor of the arrow length in x- and y-direction. The

default is 0.9, i.e. 90% of the actual length.
– gcm.arrowhead.{length, width}: Scaling factor for the width and length of the arrow-

head. Per default (0.1) the arrowhead is 10% of the length of the original arrow.
– gcm.arrowhead.type: Type of the arrowhead. Possible options are "simple", "curved",
"triangle" (default), "circle", "ellipse" and "T".

– gcm.color_grid: Color of the grid lines. The default is "#333333", i.e. dark grey.
– gcm.label.{x, y}_coord: Label of the x-/y-coordinate (below / left side of the plot).
– gcm.label.{x, y}_id: Label of the x-/y-cell ID (above / right side of the plot).
– gcm.plot_{coord, id}_labels: Should the coordinate (bottom and left) / ID (top and

right) labels be plotted? The default is TRUE.

Value

[plot].

References

• Kerschke, P., Preuss, M., Hernandez, C., Schuetze, O., Sun, J.-Q., Grimme, C., Rudolph, G.,
Bischl, B., and Trautmann, H. (2014): “Cell Mapping Techniques for Exploratory Landscape
Analysis”, in: EVOLVE – A Bridge between Probability, Set Oriented Numerics, and Evolu-
tionary Computation V, pp. 115-131 (http://dx.doi.org/10.1007/978-3-319-07494-8_
9).

Examples

(1) Define a function:
library(smoof)

http://dx.doi.org/10.1007/978-3-319-07494-8_9
http://dx.doi.org/10.1007/978-3-319-07494-8_9

34 plotInformationContent

f = makeHosakiFunction()

(2) Create a feature object:
X = cbind(

x1 = runif(n = 100, min = -32, max = 32),
x2 = runif(n = 100, min = 0, max = 10)

)
y = apply(X, 1, f)
feat.object = createFeatureObject(X = X, y = y, blocks = c(4, 6))

(3) Plot the cell mapping:
plotCellMapping(feat.object)

plotInformationContent

Plot Information Content

Description

Creates a plot of the Information Content Features.

Usage

plotInformationContent(feat.object, control)

Arguments

feat.object [FeatureObject]
A feature object as created by createFeatureObject.

control [list]
A list, which stores additional control arguments. For further information, see
details.

Details

Possible control arguments are:

• Computation of Information Content Features:

– ic.epsilon: Epsilon values as described in section V.A of Munoz et al. (2015). The
default is c(0, 10^(seq(-5, 15, length.out = 1000)).

– ic.sorting: Sorting strategy, which is used to define the tour through the landscape.
Possible values are "nn" (= default) and "random".

– ic.sample.generate: Should the initial design be created using a LHS? The default is
FALSE, i.e. the initial design from the feature object will be used.

– ic.sample.dimensions: Dimensions of the initial sample, if created using a LHS. The
default is feat.object$dimension.

– ic.sample.size: Size of the initial sample, if created using a LHS. The default is 100 *
feat.object$dimension.

plotInformationContent 35

– ic.sample.lower: Lower bounds of the initial sample, if created with a LHS. The de-
fault is 100 * feat.object$lower.

– ic.sample.upper: Upper bounds of the initial sample, if created with a LHS. The default
is 100 * feat.object$upper.

– ic.show_warnings: Should warnings be shown, when possible duplicates are removed?
The default is FALSE.

– ic.seed: Possible seed, which can be used for making your experiments reproducable.
Per default, a random number will be drawn as seed.

– ic.nn.start: Which observation should be used as starting value, when exploring the
landscape with the nearest neighbour approach. The default is a randomly chosen integer
value.

– ic.nn.neighborhood: In order to provide a fast computation of the features, we use
RANN::nn2 for computing the nearest neighbors of an observation. Per default, we con-
sider the 20L closest neighbors for finding the nearest not-yet-visited observation. If all
of those neighbors have been visited already, we compute the distances to the remaining
points separately.

– ic.settling_sensitivity: Threshold, which should be used for computing the “set-
tling sensitivity”. The default is 0.05 (as used in the corresponding paper).

– ic.info_sensitivity: Portion of partial information sensitivity. The default is 0.5 (as
used in the paper).

• Plot Control:

– ic.plot.{xlim, ylim, las, xlab, ylab}: Settings of the plot in general, cf. plot.default.

– ic.plot.{xlab_line, ylab_line}: Position of xlab and ylab.

– ic.plot.ic.{lty, pch, cex, pch_col}: Type, width and colour of the line visualizing
the “Information Content” H(ϵ).

– ic.plot.max_ic.{lty, pch, lwd, cex, line_col, pch_col}: Type, size and colour
of the line and point referring to the “Maximum Information Content” H[max].

– ic.plot.settl_sens.{pch, cex, col}: Type, size and colour of the point referring to
the “Settling Sensitivity” ϵ[s].

– ic.plot.partial_ic: Should the information of the partial information content be plot-
ted as well? The default is TRUE.

– ic.plot.partial_ic.{lty, pch, lwd, cex, line_col, pch_col}: Type, size and colour
of the line and point referring to the “Initial Partial Information” M [0] and the “Partial
Information Content” M(ϵ).

– ic.plot.half_partial.{pch, cex, pch_col}: Type, size and colour of the point re-
ferring to the “Relative Partial Information Sensitivity” ϵ[ratio].

– ic.plot.half_partial.{lty, line_col, lwd}_{h, v}: Type, colour and width of the
horizontal and vertical lines referring to the “Relative Partial Information Sensitivity”
ϵ[ratio].

– ic.plot.half_partial.text_{cex, col}: Size and colour of the text at the horizontal
line of the “Relative Partial Information Sensitivity” ϵ[ratio].

– ic.plot.legend_{descr, points, lines, location}: Description, points, lines and
location of the legend.

36 runFlaccoGUI

Value

[plot].
A plot visualizing the Information Content Features.

References

• Munoz, M. A., Kirley, M., and Halgamuge, S. K. (2015): “Exploratory Landscape Analysis of
Continuous Space Optimization Problems Using Information Content”, in: IEEE Transactions
on Evolutionary Computation (19:1), pp. 74-87 (http://dx.doi.org/10.1109/TEVC.2014.
2302006).

Examples

(1) create a feature object:
X = t(replicate(n = 2000, expr = runif(n = 5, min = -10, max = 10)))
feat.object = createFeatureObject(X = X, fun = function(x) sum(x^2))

(2) plot its information content features:
plotInformationContent(feat.object)

runFlaccoGUI Run the flacco-GUI based on Shiny

Description

runFlaccoGUI starts a shiny application, which allows the user to compute the flacco features and
also visualize the underlying functions.

Usage

runFlaccoGUI()

Details

A shiny application is a web-app which can be accessed through a browser.

References

• Hanster, C., and Kerschke, P. (2017): “flaccogui: Exploratory Landscape Analysis for Every-
one”, in: Proceedings of the 19th Annual Conference on Genetic an Evolutionary Compu-
tation (GECCO) Companion, pp. 1215-1222, ACM. (http://dl.acm.org/citation.cfm?
doid=3067695.3082477).

• Kerschke, P., and Trautmann, H. (2019): “Comprehensive Feature-Based Landscape Anal-
ysis of Continuous and Constrained Optimization Problems Using the R-package flacco”,
in: Applications in Statistical Computing – From Music Data Analysis to Industrial Qual-
ity Improvement, pp. 93-123, Springer. (https://link.springer.com/chapter/10.1007/
978-3-030-25147-5_7).

http://dx.doi.org/10.1109/TEVC.2014.2302006
http://dx.doi.org/10.1109/TEVC.2014.2302006
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
http://dl.acm.org/citation.cfm?doid=3067695.3082477
http://dl.acm.org/citation.cfm?doid=3067695.3082477
https://link.springer.com/chapter/10.1007/978-3-030-25147-5_7
https://link.springer.com/chapter/10.1007/978-3-030-25147-5_7

SmoofImport 37

SmoofImport Shiny Server Function for BBOB Import Page Module

Description

SmoofImport is a shiny server function which will control all aspects of the SmoofImportPage-UI
Module. It will be called with callModule.

Usage

SmoofImport(input, output, session, stringsAsFactors)

Arguments

input [shiny-input]
shiny input variable for the specific UI module.

output [shiny-output object]
shiny output variable for the specific UI module.

session [shiny-session object]
shiny session variable for the specific UI module.

stringsAsFactors

[logical(1)]
How should strings be treated internally?

SmoofImportPage Shiny UI-Module for Batch Import of Smoof Functions

Description

SmoofImportPage is a shiny UI-component which can be added to your shiny app so that you get
a batch import for a specific shiny function but different parameters.

Usage

SmoofImportPage(id)

Arguments

id [character(1)]
Character representing the namespace of the shiny component.

Details

It will load a CSV-file with parameters for the smoof function and calculate the selected features
for the specific function.

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=smoof

Index

∗ data
featureList, 18

BBOBImport, 2
BBOBImportPage, 2, 3

calculateFeatures
(calculateFeatureSet), 3

calculateFeatureSet, 3
callModule, 2, 20, 22, 25, 37
character, 3, 19–21, 23, 24, 28, 37
computeGridCenters, 15
convertInitDesignToGrid, 16
cor, 8
createFeatureObject, 4, 21, 22, 24, 29, 31,

32, 34
createFeatureObject (FeatureObject), 18
createInitialSample, 17
cutree, 7

data.frame, 16, 19, 24
density, 4, 6
dist, 5, 8, 24

featureList, 18
FeatureObject, 4, 18, 18, 19, 21, 22, 24, 29,

31, 32, 34
featureObject_sidebar, 20
FeatureSetCalculation, 20
FeatureSetCalculationComponent, 21
FeatureSetVisualization, 22
FeatureSetVisualizationComponent, 22
findLinearNeighbours, 23
findNearestPrototype, 24
function, 19
functionInput, 25

ggplotFeatureImportance, 25
Glass, 18
grad, 6

hclust, 7
hessian, 6

integer, 15, 16, 19, 23, 24

kurtosis, 6

list, 23
listAvailableFeatureSets, 4, 28
logical, 3, 19, 21–23, 25, 28, 37

matrix, 17, 19
measureTime, 29

numeric, 15, 16, 19, 24

optim, 4

plot.default, 35
plotBarrierTree2D, 29
plotBarrierTree3D, 31
plotCellMapping, 32
plotFeatureImportance

(ggplotFeatureImportance), 25
plotInformationContent, 34

ResampleDesc, 6
runFlaccoGUI, 36

skewness, 6
SmoofImport, 37
SmoofImportPage, 37

38

	BBOBImport
	BBOBImportPage
	calculateFeatureSet
	computeGridCenters
	convertInitDesignToGrid
	createInitialSample
	featureList
	FeatureObject
	featureObject_sidebar
	FeatureSetCalculation
	FeatureSetCalculationComponent
	FeatureSetVisualization
	FeatureSetVisualizationComponent
	findLinearNeighbours
	findNearestPrototype
	functionInput
	ggplotFeatureImportance
	listAvailableFeatureSets
	measureTime
	plotBarrierTree2D
	plotBarrierTree3D
	plotCellMapping
	plotInformationContent
	runFlaccoGUI
	SmoofImport
	SmoofImportPage
	Index

